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10.

NUMERICAL SOLUTIONS

Use the explicit method

™ = 2(1 — pYum+ pHup—1 + um+t) Un '

and central difference approximation for the derivative conditions, to

calculate a solution for 0 < x < 1and 0 < ¢ < 0.5 with A=k = 1
The first and second Lees ADI methods for solving the equation

Pu_ i, P

a1 9x2 9)?

can be written as ‘
() w*ih =2ulm—ul'm' +p2mut Tt + (1= 20)uf m+ il m']

+ 2821 = 20)uf m + 200} ']

+1 n+1 2 -1
Ul = Ul + D203l —ulm)

and
(i) T = 2ulm =l m +p?2mu*i + (1 = 20)ulm+ nurm ] + P285 ' m
Uik = i+ mp28 Ui — 2ulim + Uim)
where 7 is arbitrary.

Determine the uniform difference schemes in (i) and (ii). Show that
the principal parts of the truncation error and the stability criteria
are the same for both methods.

. Write the first and second one parameter Lees ADI methods for the

solution of the wave equation

32u 2y

Frclr R ayz+ cu
Determine the order of accuracy and the stability criterion tor both
methods. .

The first and second Lees ADI methods for the equation
Pu_ 62u 3u + d*u
a2~ ot 2" o2

are of the form

() wtmH = 2 — =t 4 38Rt 4 (1 = 2+ Y]

+ pA(85 + 8D[(1 — 2"+ 2]
el = el g p2n32 (unnﬂ — 1)
Ul = yhentl g pz,,s*(u-n_ 1)
and -
Gi) et = 2um = =1 4 p282mutnHd 4 (1 = 20)un+ 1] — pA(8) + S
L P p’sﬁ(u*_’*"“ —2un+ut)

v untl = gkantl L nPZSZ(uuH —-2ur+ un—l)



HYPERBOLIC EQUATIONS 435

central grid point. Accurate results are obtained for p=1, 4 and 8 when B/
lies in the range 6.0 <B/a < 8.0,1.3 < Bjx < 1.6 and 1.1 < B/x < 1.25res-
pectively. It is seEh\tpat for fixed p, a value of B;« in the given range can be
found which has an accuracy better than the results given in Table 6.8. The
errors in the solution using the Beam-Warming method (x=p), are higher
than the results obtained here.

Bibliographical Note

The excellent texts dealing with the numerical solutions of the hyperbolic
equations are 9, 96, 184 and 203. The stability of the linear finite difference
equations is discussed in 168. The high order difference schemes are given
in 80, 126 and 129. The difference schemes for the second order hyperbolic
differential equations with variable coefficients and with or without mixed
derivatives are studied in 44, 169, 180 and 181. The solution of one dimen-
sional wave equation under derivative boundary conditions has been exa-
mined in 150.

The LOD method for obtaining the numerical solution of the hyperbolic
equations in two and three space dimensions is given in 98, 130 and 215.

The explicit and implicit difference schemes for the system of hyperbolic
equations are discussed in 2, 96, 99, 116, 159, 167, 176, 178, 179, 202, 204,
210, 225, 232 and 239. The Kreiss stability analysis of the difference schemes
is given in 1, 16, 90, 95, 105 and 158.

1 roblems

1. The function w(x, ¢) satisfies the differential equation
u  *u
Frohe -3;2+cu
with boundary conditions
u=0forx=0and x=1,7 2 0
Let u and du/0t be prescribed for 1=0,0 < x < 1.

(i) Derive the difference scheme by replacing the derivatives by central
differences. ‘

(i) Obtain the principal part of the truncation error.

(iii) Determine the stability criterion of the difference scheme.

2. - The differential equation
Pu_ o
12 Ox?
is approximated by the difference scheme
(1 + 7821870 = p¥8tim + cp?hPutn
where 7 is arbitrary, p=k/hand cis a constant.

+cu
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I

12.

where u***! and u****! are intermediate values and 9 is arbitrary.
Obtain the principal part of the truncation errors and the condi-
tions for unconditional stability for both methods.

The second order hyperbolic equation

2y %y |, ou
-a—t—2=a-a—;2+b-a—;+cu, 0<xx<l1
with the initial and boundary conditions

ulx, 0) =g1(x), 545 O < gy

u(0, )=fi(t), u(l, 1)=f()

where a, b, c are constants, @ > 0, and fi(?), f2(1), gi(x) andga(x) are
known functions, is solved using the difference scheme

(1=B18)im™"y +4(1 +B2O)uiit' +(1 = BsB)ulit
=[2+Bi(1 = 20)um—1 + 412 — Ba(1 — 20)]uim +[2 + B3(1 = 20)]uis 1
= (1= BiOu 1= 4(1 + BBy — (1 — BaB)urs )

where
B1=6ap?— 3bpk + ck?, B2 =3ap*— ck?
B3 =6ap?+3bpk + ck?,
p=klh,0<0<1
Obtain:

(i) the local truncation error;
(ii) the stability criterion.

" |
Let up ' =uli+ —2—p(4uﬁ+| ~Ums2 = 3um) + 17 P (Ums2 = 2ums1 + i)

where p =k/h, be a difference approximation to the differential equation
Ou _ou

at ox

(i) What does the schematic form look like?
(ii) How big is the local truncation error?

- (iii) State some values of p for which the difference approximation is

stable. (BIT 9 (1969), 400)

13. The differential equation

cu , Cu
i b -?—J- cu, ¢ >0
is approximated by the differcnce equation

n41 n-1 ” n
U =UUm 2/”’[‘.\'5.\-"»1 —=2kctm

where p=kh,
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20. Consider the following three-step method

w172 _ | n n . P oyen n
ll:'n 11275 (llm:; l!m—l[:) + —,"“(fm+l - fm)

\

mil__ nel2 eni 12
W =tlm +I)(flll+l/2'— m—l/Z)

ni : n+1 n+—l
um um +I’{flu+l f—1)

for the solution of the differential equation

éa_of _ ou
& ox Dox
where = g_f_
du
(1) Determinc the amplification matrix G associated with this method
for A constant matrix. :
(ii) If A is diagonalizable then find the stability condition.
(iii) Is the three-step method dissipative in the sense of Kreiss?
tiv) Determine the relative phase error.
(v) Consider a four-step-method by adding another leapfrog step .to
the three-step method

n4-3 n+l n+2 n4-2
Um =Un -+ [)(fu-t = 1Ip— l)~

Show that the fourth-step method is dissipative of order four.
21. Consider the leapfrog scheme of the form

n—-1

nyt -1 " n n-1 n-1
Uy = ll;:: ‘*]7“‘:"{-1 —fm-1)— (llm-z 4um—1 +6u

n—-1

”"
—4u,, [N um-}z)

where o is an arbitrary parameter, for the solution of the equatlon

cu_of

ct  oOx

Determine the stability criterion when f=Au where A is a constant
matrix.
22. We assume the difference scheme

il = LZ (Wnst + 1) — ap(fon 1 — fmey— 2hzly)

“::-l = u:l 4 [(1 - la)r:l’l 41— fl'r't~ 2/12,") + ( ¥llf| ¥,.jilv

—2haR Yy (k= - 2/:3:::")]
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where « is an arbtirary constant to be prescribed and

*n 41 N B
fm' f(lln: s Xy In)

*n4 | *ad1
Im _z(“m Sy Xmy tn)

—nt 1 .
m =f("m, Xnty tntt)
“n+l

z =Z(ll:'::,x m, ’nH) )
for the solution of the nonlinear system
ou . if(u, x, 1) _ o
(—"' ; 'T—Z(u, X, I)
with the initial and boundary conditions
' u(x, 0) = uy(x)
w0, 7)=w(x) , t>0
(i) How big is the local truncation error for arbitrary o? -
(ii) State some values of a for which the difference scheme is stable.

23. Solve the following initial and boundary value problems;

o Ou_ Ou _
(i) = +9;—0, 0<x<o

u(x,0)=f(x), 0 < x < 10

where
0 , 0 x <]
Sx)=sin8m(x—-1) , 1 <x<K?2
0 , 2K x<
with the exact solution, u(x, r) =f(x—r)
u(x, 0)=1+x

w0, )=1/(1+1)
with the exact solution

ulx, )=>0+x)/(1+0
(iii) ——+i(-é— u2)=0

1, 0<x<.1
u(x, 0) =
0, x>.1

u(0,1)=1 , >0

using the methods given in the text. Obtain the numerical results from
the computation.
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then show that the amplification matrix G is given by

G=1+4iN—8N2—-8/N [Azsinzﬁh +-(AB + BA) sin E—cosﬂh
X Y B Gin? y/:]
sin 5 2 1B >

When A and B commute prove that the ei‘genvalues of G satisfy

| g P=1-—64n2 [Afl sin® — B +)‘B Zh

—(/\lzv +A% sin* f32_h +X sin? 7211)]

where Ay, A4, Asare corresponding eigenvalues of N, A, B respectively.
The stability criterion is satisfied if

_ [pp(A)*3 +[pp(B)]*3 < 1
28. Consider the difference scheme

lll'z;*n‘ = [I_AZ—BZ‘F '%’(AB'FBA)]II;',M

] n
—;—A +—2—A2— ’:'i' (AB+BA)— A]u,_.,,,.

+ [— (AB +BA) + A]ll;'—l,m—l

7‘ B2— —i- (BA +BA) + A]u;',,,.ﬂ

1 1 1 n
+ [——2—B + > Bz——z (AB + BA)—A]ul,m—z
+ [—'(AB +BA)— A]llf'+ Lm+t

[ > A+——A2— ——(AB+BA)+A]||1+1 m

where A is an arbitrary N x N matrix, for the solution of the differen-
tial equation

éu _ , Ju du
ar Aax + B‘@

Show that the amplification matrix, for A= — :—(A+B), is given by
G =1- A%(1 —cos Bh)—B2(1 - cos yh)
+ —;—(AB +BA)[(1 - cos yh)(1—cos Bh)—sin Bh sin V4]
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29.

30.

+ —;—[A(sin (B +yh) +sin Bh—sin yh) +B(sin (Bh +yh)

—sin BA+sin yh)]

Solve the initial and boundary value problems:
(i Gegu.

ot 0dx ' dy

u(x, y, 0) =sin 27x sin 27y

u(l, v, t)=sin 27t sin 27(y +1)

u(x, 1, t)=sin 2=t sin 2n(x+1)
with the exact solution

u(x, y, ) =sin 2a(x +1) sin 27(y 1)
onG ={0 < x < 1]1x[0 <y < 1[r > 0];

..3u312i_1_2)_'

(ii) a—r+a(—4—u )+3y(4 w)=0
ll(x, b O) = %‘ (x +y)2

1 —(1+yn)i2 }2

'
1-(1 -I-xrt)?/?}z
t

u(0, y, 1) ={

u(x, 0, 1) ={

with the exact solution

_ . 112 72
u(x,y,t)=[1 (EXEZRY] ]
onG ={[0 < x < 11x[0 <y < 1}x[t > 0];

using the numerical methods given in the text,
Consider the first order hyperbolic system in three space dimensions
du du du Ju

5? +A$+B@ +C5.; =0

with appropriate initial and boundary condition, where A, B and C
are constant matrices and u is a vector function.
Write:

(i) the diffusing scheme;

(ii) the leapfrog scheme;

(iii) the two-step Lax-Wendroff scheme and simplify to get a composite
scheme.
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Difference Methods for Elliptic
Partial Differential Equations

7.1 INTRODUCTION

The elliptic partial differential equations always occur purely as boundary
value problems. Thus the considerations of Chapter 4 can be extended in a
natural way to the boundary value problems in more than one variable. The
applications of the difference methods to the elliptic differential equations
often lead to a large system of algebraic equations and their solution is a major
problem in itself. The iterative methods are generally used to solve the large
system of equations.

Alternatively, if the solution of an elliptic boundary value problem is in-
terpreted as the stationary solution of an appropriate initial boundary value
problem, then such problems can be treated by the methods given in Chap-
ters 5 and 6. , . _

Here we shall discuss difference schemes to solve numerically linear ellip-
tic boundary value problems.

7.2 DIFFERENCE SCHEMES

_ Consider the solution of the differential equation

Py, u Ou, Ou R
Lu=agz+cgs+dy +eg +fu=f* .0

in the region R subject to the Dirichlet boundary condition
u=g(x,y) on dR (7.2)
where a, ¢, d, e, f and f* are functions of x and y. We assume that these
functions are continuous in R +JR and furthermore a > 0,¢ > 0, f < 0.
Let us superimpose on R a rectangular network with mesh lengths 4 and
k in the x and y-directions, respestively. The nodal points. are given by
xi=xo+lh, 1=0,%1,%2,:.
ym=yo+mk, m=0, £ 1, -t 2, ...
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Two nodal points are called neighbouring points if they are one mesh length
apart along the x or y axis. A nodal point is called a pivot if it lies within or
on dR. A pivot is termed as an internal pivot if it has four neighbouring
pivots. A boundary pivot is one for which at least one of its neighbouring
nodal points is not a pivot. The region R and its boundary curve dR are

“shown in Figure 7.1. The internal pivots comprising R are denoted by shad-
ed circles and the boundary pivots comprising 9 R by open circles. The pivot

Y74 Wiy )

o]

Fig. 7.1 The region R and its boundary curve s R

(x1, ym) will be denoted by. (I, m). We can now form the difference scheme °
by substituting difference expressions for the derivatives in (7.1). The differ-
ence scheme at every internal pivot (/, m) can be written as

2 2 S )
Sttiym 1 oy Sttty | gy MaxOxlllym | e,,m'_‘&:hz' N

Lh“’,m = al,m h2 kz h

(7.3)

where u1,m is the approximate value of u(x1,ym). #x is the average operator in
x direction and at,m, ¢i,m,--- are the values of the coefficients at (/, m).
Simplifying (7.3), we obtain the difference scheme

1
Lyut,m = 'h_z(Al,mWH,m + Br,mtit-1,m + Ctymtt,m+1 + Di,mtit,m—1 — Elsmulgm) =f Ifm

(7.4)
where
Al,m = Qlym + ihdl,m
Bi,m = at,m — thdi,m
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Cim= ACtym + i“-”zhel,m
Dim = acrym— Y0 2hesm
Epm= 2a,m + 2%Ct,m— h’_’ﬁ,m
B2
)

If (I,m) is a boundary pivot such that it lies on IR, then we substitute
u1,m by its value gi,». However, if the boundary of the regions R is not such
that the network can be drawn to have the boundary coincide with boundary
pivots, then we must proceed differently at boundary pivots near the boun-
dary dRR.-

Let us consider the general case of a group of five points whose spacing
is nonuniform, 48; and 483 along x axis, k32 and k34 along y axis, arranged
as in Figure 7.2, We represent

o= u(x1, ym) y,  ur=u(x1+8h, ym)
w2=u(xs, ym+82k) , us=u(x1—83h, ym)
ua=u(x1, ym—84k) (7.5

- P
2

kSz
h83 hS,

P
P3 () A

ks‘

T%

Fig. 7.2 The nodal points at unequal distances

The first and second derivatives can be written as
ou_u—u

O E-n5 o

(i) g;‘j s o
du  uz—to

i) 5= 5+ 0

dy Sk
Pu_2[ 1 _(w, us) to
) ox? hz[(al +33)(3| + 33) 0183 ] +0(A)

o 02 2 1 u2 | u. u
o) 7= plorm (5 5) - 3 +ow .6



